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1 Hurst exponent, fractal dimensions and time se-
ries

So far we covered the topic of intermittency as a concentration of probability
distribution function in localized small patches. We also introduced time
series as a collection of experimental data obtained over a certain time range
t or at different number of steps N . Investigating the variance and other
subsequent moments of such a series provides qualitative insight on the
dynamical behavior of the system that generated this data.

The classic example of a time series discussed in class was the Nile
flooding and the associated intermittent Joseph and Noah effects. The two
terms were introduced by Mandelbrot to describe the memory of a time
series. By definition, the Joseph effect describes movements that are part
of a larger, overall stationary cycle yet presents patterns of high and low
amplitude respectively (7 years of famine followed by 7 years of abundance
Joseph talked about in the Old testament) and the Noah effect is associated
with large and amplified rare events that lead to infinite variance in the series
(the great flood).

The topic of time series lead us to define the Hurst exponent of a random
process B(t) as a parameter that encodes the fractal character of the dynamics
behind the series:

D ∼ log(N)

log(1/ε)
→ H ∼ log(∆B)

log(∆t)

suggesting a direct relation to the fractal dimension and to the degree of
randomness in the series (mild, wild or slow randomness). Here ∆B and ∆t
are increments over a non vanishing interval. A direct relation between H
and D is:

H = 2−D

where 1 < D < 2 → 0 < H < 1. This direct relation between H and D
implies that the Hurst exponent is a measure of the fractal smoothness based
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Figure 1: Examples of data series for values of the Hurst exponent H = 0.043,
H = 0.53 and H = 0.95 respectively.

on the asymptotic behavior of the rescaled range of the time process. Hurst
exponent satisfies the equation:

δ2H =
R(δ)

S(δ)

where δ is equivalent to time, R(δ) is the statistical data range and S(δ) is the
standard deviation of the statistical set. In this sense, H is the counterpart of
fractal dimension for intermittency in time series. Depending on the value of
H, the series can be classified into different types and consequently exhibits
different behaviors (See Fig. 1):
For 0 < H < 0.5: the time series switches or alternates between high and low
values. The parameter in question increases and decreases in an anti persistent
oscillatory motion, exhibiting a higher than normal order of randomness with
a tendency to regress to the mean.
For 0.5 < H < 1 there is a persistent trend or pattern in the data. A sense
of long memory affects the system behavior and influences its later dynamics
pushing for the parameter in question to stick to its previous value as time
passes and as the series evolves.
The H = 0.5 case corresponds to an ordinary Weiner Brownian diffusive
motion (Central limit theorem).

At this point, one might ask the question: how is this related to plasmas?
Clearly, an analogy between the Nile example and a plasma confinement
system can be drawn, that is:
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Fig.(2) helps illustrating the analogy furthermore:

Figure 2: Analogy between the Nile example and a plasma confinement
system.

2 How to extract H from a time series?

Given a time series, the first oder of business is to figure out a way to compute
the Hurst exponent H of the series in order to properly characterize the data
set. For a data set X1, X2, . . . Xn, we define the expectation value:

E[
R(n)

S(n)
] = Cn2H

where n is a number of points, S(n) and R(n) are the standard deviation
and the range of the series containing the first n values spanned in time. The
procedure is to divide the original n-terms series into subsets or sub-series
for each n = [N,N/2, N/4 . . . ], then for each constructed time subset:

• Calculate the mean m = 1
n

∑n
i=1Xi

• Adjust the series to the mean by setting Yt = Xt −m for t = 1, . . . n

• Compute the cumulative deviation from the mean Zt =
∑t

i=1 Yi
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• Compute the range of deviation R = max(Z1, . . . Zn)−min(Z1, . . . Zn)

• Compute the standard deviation S(n) = ( 1
n

∑n
n=1(Xi −m)2)1/2

From the average ratio R(n)/S(n), H can be calculated as the range of
cumulative deviation over the standard deviation of the series:

R(n)

S(n)
= Cn2H

Here the average is performed over all partial time series, which are subsets
of the original n-terms time series. For H > 0.5 the future trend of the time
series will be consistent with its past, for H < 0.5, it evolves in an opposite
trend and for H = 0.5 the future of the series is random.

For the Nile example, the empirical value of H lies between 0.7 and
0.8 as measured by H. E. Hurst. Clearly H 6= 0.5 and the time series of
the river water level does not fit a Gaussian distribution. It shows instead
characteristics of discontinuity and durability i.e. the Noah and the Joesph
effects respectively. Random Brownian models cannot be used to describe
this so called fractional Brownian motion (FBM). The expectation of the
first and the second order moments are then:

E{BH(t+ T )−BH(t)} = 0

E{(BH(t+ T )−BH(t))2} = T 2H

instead of being:
E{BH(t+ T )−BH(t)} = 0

E{(BH(t+ T )−BH(t))2} = T

where the increment T > τac for a Wiener Brownian motion (WBM). We
mention that the above definition can be generalized for a fractal/multi-fractal
by a uniscaling property stating that:

E{|BH(t+ T )−BH(t)|q}1/q = Ct× TH

Cases where the q-th scale factor depends on q are called multi-scales and
will be studied in the next section.

3 Properties of a time series spectral density.

When a time series is collected, one would try to investigate its higher order
moments to get meaningful insight on its physics. Measurements of the
second order moment (variance), the third order moment (skewness) and
the fourth order moment (kurtosis) characterize the series tail and flatness.
Given a time series g(t), we define a generalized Hurst exponent H = H(q)
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that is derived from the higher order moments of the series. The expectation
value of the q-th order E{|BH(t+ T )−BH(t)|q} is q dependent since it is a
multi-fractal case:

E{|BH(t+ T )−BH(t)|q} ∝ f(q)

By analogy with turbulence, the correlation function of the data points in
the series is:

Sq = 〈(g(t+ τ)− g(t)q)〉 ∼ τ qH(q)

where t > τ , τ being the time lag between two data points. The spectral
density can be obtained by computing the frequency spectrum of the auto-
correlation function Sq i.e. computing its Fourier transform:

〈B2〉w =

∫
e−iwτ 〈∆B(t)∆B(t+ τ)〉

One verifies that
〈B2〉w ∼ ω−α (1)

with α = 2H − 1. For a white noise case, α = 0 and H = 1/2 corresponding
to a WBM (Fig. 3). The spectral density is equivalent to a white noise:

〈B2〉w ∼ w0 ∼ f0

One can also obtain a white noise for a mutli-fractal WBM (Fig. 4).

Figure 3: Top: Cumulative increments of a WBM. Bottom: Individual
uncorrelated increments corresponding to the same WBM with a white noise
signature.
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Figure 4: Top: Cumulative increments of a multi-fractal WBM. Bottom:
Individual increments corresponding to the same multi-fractal WBM with a
white noise signature. Here the increments are far from being Gaussian.

4 Pink noise or 1/f noise

When H = 1, the value α is equal to 1 and the spectral density equation
is inversely proportional to the frequency, that is: 〈B2〉ω ∼ 1/ω ∼ 1/f .
This universal 1/f power law was studied by Montroll and Schlesinger in
their work entitled ’On 1/f noise and other distributions with long tails’.
Qualitatively, 1/f noise refers to a persistent distribution of events where
big ones are rare and smaller ones occur much more frequently (Joseph and
Noah effects). Unlike the Brownian case where fluctuations are completely
random, the data points of the series have a sense of long term memory
associated with the H value being equal to or close to unity. When this
law occurs in electronics, it is referred to as Flicker law. A notion of self
similarity and scale invariance is associated with this phenomenon.

Figure 5: White and Pink noise and their corresponding spectral densities.
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Although similar to Zipf’s law, 1/f noise and the latter are not the same.
In its original form, Zipf’s law originated as a result of the linguistic G. Zipf
trying to verify that the occurrence or appearance frequency of a word is
inversely proportional to its rank in the frequency table. Population ranks of
cities in different countries i.e. formation of mega cities follows a Zipf’s law.
Given a set of Zipfian distributed frequencies, sorted from most common to
least common, the second most common frequency will occur 1/2 as often as
the first. The third most common frequency will occur 1/3 as often as the
first. The n-th most common frequency will occur 1n as often as the first.
Although this might infer a strong similarity with the 1/f power law, this
correspondence cannot hold exactly, because items (words in the original
form of Zipf’s law) must occur an integer number of times; there cannot be
2.5 occurrences of a word. Nevertheless, over fairly wide ranges, and to a
fairly good approximation, both related are related.

Figure 6: Zipf’s law.

In the same paper referred to above, Montroll and Schlesinger tried
to answer the following question: What kind of relation exists between a
log-normal process and the 1/f power law? They considered a distribution
function which logarithm log(x) is normally distributed:

F (log(x)) =
exp[−(log(x)− log(x̄)2/2σ2]

(2πσ2)1/2
(2)

x̄ is the mean and σ2 is the variance. Since dlog(x) = dx/x, the probability
that the variable x/x̄ lies in the interval d(x/x̄) at x/x̄ is:

g(x/x̄)d(x/x̄) = P (log(x))
dlog(x)

dx
=
exp[−(log(x/x̄))2/2σ2]

(2πσ2)1/2
d(x/x̄)

(x/x̄)
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Taking the logarithm of the g expression:

log(g(x/x̄)) = −log(x/x̄)− [log(g(x/x̄))]2/2σ2 − 1

2
log(2πσ2)

the last term being a constant. If we set 1/f = x/x̄, we can rewrite the last
equation as:

log(g) = −log(f)− 1

2
(
log(f)

σ
)2 − 1

2
log(2πσ2) (3)

For σ � 1, the relation g = 1/f follows from the linear equation. On the
other hand, for σ ∼ log(f) we have g(f) ∼ 1/f ∼ 1/(x/x̄). This shows that
the log-normal law can be well approximated by 1/f law.

B. Carreras, Ph. Van Milligan and C. Hidalgo investigated long range
correlations of plasma edge fluctuations in different confinement systems.
In ref. [1], using the ion Larmor radius ρi and the micro-instability inverse
growth rate as scales of turbulence, lc and τc respectively, the authors tried
to characterize transport in plasmas by examining those long range depen-
dences. They started by analyzing values of the Hurst exponent of the plasma
edge density fluctuations as generated by a Langmuir probe. H values were
found to range between 0.62 and 0.75 for three stellarators and one tokamak.
Being greater than 0.5, these values are evidence of long range (persistent)
correlations in the plasma turbulence; that is Mandelbrot’s Joseph effect.

Figure 7: Hurst coefficient values for three stellarators (TJ-IU,W7-AS and
ATF) and the TJ-I tokamak.

The authors also pointed out that one feature of turbulence induced fluxes
is that they are bursty. In fact a probability distribution function of these
fluxes shows a long tail with 10% of the largest flux events being responsible
for 50% of the transport (See fig.(7) in ref [2]). This realizes Mandelbrot’s
Noah effect and suggests similarity with the heavy tailed Pareto distribution
function to be discussed shortly.
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When computing the frequency spectra of plasma edge ion saturation
current, Carrers et al. obtained the following curve (See fig.(8)). Similar
curves were obtained for the electrostatic potential fluctuations and the
turbulent particle flux frequency spectra respectively. The generic form of

Figure 8: Frequency spectra of fluctuations in various confinement systems
as function of the frequency w.

the power spectrum was found to be:

P (ω) ∼ ω−α

with α being the decay index. A distinction between three regions, depending
on the value of the frequency was made. For low frequencies ω, the coefficient
α is equal to 0. For intermediate frequencies α = 1 and an avalanche along
with a 1/f noise are observed. Finally, at high frequencies, α > 3 and a
signature of a power law ∝ 1/ωα is observed.

5 Pareto-Levy distributions and Levy flights

For systems with H 6= 0.5, a Gaussian probability distribution function
cannot be used as a characteristic pdf. One should therefore look for an
alternative distribution function to characterize these systems. Levy flights
for instance, are a prime example of such systems and are characterized by a
heavy tail pdf.

P. Levy was the first to study these systems along with their corresponding
probability distribution functions. Motivated by the allocation of wealth,
Pareto continued his predecessor work and stated the 80-20 rule which says
that 20% of the population controls 80% of the wealth. Recent studies have
shown however that it is more of a 70-30 rule. Regardless of percentages,
the Levy- Pareto distribution is characterized by a heavy tail. In fact data
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Figure 9: Brownian and Levy Flight motion.

provided by the IRS proves that the income of a great percentage of the
population has an excellent fit to a heavy tail log normal distribution with
the last and rare 2-3 percentile of the population accumulating wealth via
means that are not available to the rest of us. B. Mandelbrot, who continued
Pareto’s work, investigated the survivor function of the distribution of step
sizes U derived from Pareto distribution of income:

P (U > u) =

{
1 : u < 1

u−D : u ≥ 1

Here D is a fractal dimension parameter and the distribution is a particular
case of the heavy tail Pareto distribution (power law) with a tail index α.
Initially motivated by the study of wealth distribution as we said, Pareto
found that the probability of an income U to be greater than u has the
general form:

P (U > u) =

{
1 : u < U

(u/U)−α : u ≥ U

for which corresponds the heavy tailed strong Pareto law:

p(u) = −dP (U > u) =

{
0 : u < U

α(U)u−(α+1) : u ≥ U

Here U is a scaling factor and α is the tail index 0 < α < 2. When 1 < α < 2,
the distribution is called a strong Pareto distribution. The negative
exponent of u suggests a strong power law that leads to a slow decrease of
the Pareto distribution for large u values, and the log-log plot of p(u) vs u is
a straight line with a negative slope.
The strong Pareto law however is acknowledged to be empirically unjustified.
On the contrary, there is little question on the validity of another similar
law for sufficiently large values of u. The best way of taking care of this
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limitation is to say that P (U > u) behaves like (u/U)−α as u → ∞. This
defines a weak Pareto law

P (U > u) = [1 + e(u)](u/U)−α

where e(u)→ 0 when u→∞. Its corresponding probability density function
is

p(u) ∝ (u/U)−(α+1)

and is also characterized by a heavy tail index (α < 2).
One might also think of the continuous Pareto distributions as the dis-

crete counterpart of Zipf’s distributions, sometimes called zeta distributions.
Another example of a heavy tail distribution is the Cauchy distribution for
which

p(∆x) =
A

B + ∆x2

Figure 10: Comparison of tails for the three distribution functions.

The weak Pareto distribution covers only a part of the total population.
In an attempt to rectify this discrepancy between the real population and
that predicted by weak Pareto law, one can suggest an exponential tail
distribution p(u) ∝ u−(α+1)e−bu where b has to be small for p(u) → 0 for
large u values. Another alternative might be to work with a log-normal
law since both distributions are represented by a straight line for large u
values. One can then speak of log(u) additivity and convergence of second
order moment. These two alternatives have the same behavior as Pareto
distribution with a variance that diverges for large u without any restriction
on α.
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6 Generalizing the Central Limit Theorem

6.1 Definition of the Levy stable distribution

Definition of Levy stability
If U ′ and U ′′ are two statistically independent incomes or samples that follow
a Pareto-Levy distribution, then U ′⊕U ′′ = (a′U ′+b′)⊕(a′′U ′′+b′′) = aU+b
will also follow a Pareto-Levy distribution if all coefficients are positive. In
other words, a distribution is said to be Levy-stable if a linear combination
of two independent copies of a random sample has the same distribution.
Gaussians, which are the only stable distributions with finite variance, and
Cauchy distributions are examples of stable functions. In addition, Pareto-
Levy distribution, for which 1 < α < 2, is a Levy stable process. Its density
p(u) is determined by its Laplace transform:

G(b) =

∫ +∞

−∞
e−budP (u) =

∫ +∞

−∞
e−bup(u)du = exp[(bu?)? +Mb]

where 1 < α < 2, u? is a scaling parameter and M is the expectation value.

Figure 11: Densities of Pareto Levy distributions for M = 0, and α =
1.2, 1.5, 1.8 respectively.

From the pictures above, one notices that as long as α is not close to
2, the P-L distribution curve very rapidly becomes indistinguishable from
a strong Pareto curve of the same α. As for large negative values of u,
the corresponding L-P probability rapidly decreases as u→∞, even faster
than in the case of a Gaussian distribution. When α approaches 2, the P-L
density tends toward a Gaussian density. Close to the limit, the P-L already
resembles a Gaussian and only for large u is the Gaussian decrease replaced
by a Paretian decrease.
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The Central Limit Theorem states that the arithmetic mean of a sufficiently
large number of independent Gaussian random variables is approximately
normally distributed, regardless of the underlying distribution. This unique
property of the Gaussian distribution was reconsidered by Levy who formu-
lated a broad approach valid for distributions with infinite variance.
Starting with a normalized pdf p(x) of a random variable

∫
p(x)dx = 1 and

its characteristic function:

p(q) =

∫
dxeiqxp(x)

one can write the second moment

〈x2〉 = lim
q→0

[−i2 ∂
2

∂q2
p(q)]

We look for a general form of a stable distribution that is an attractor of
motion. Consider two stable distribution functions X1 and X2 and their
linear combination Cx3 = C1x1 + C2x2. X3 is stable if the coefficients C1,
C2 and C are all positive (from the stability definition stated above). If
this equality holds, then the probability p(x3) for a value x to fall in the
x3, x3 + dx3 range is:

p(x3)dx3 = p(x1)p(x2)δ(x3 −
C1x1 + C2x2

C
)dx1dx2

Replacing the expression of Cx3 = C1x1+C2x2 in the generating function
expression, we obtain:

(4)

p(Cq) =

∫
dx3e

C.
C1x1+C2x2

C p(x3)

=

∫
dx1e

iqC1x1p(x1).

∫
dx1e

iqC1x1p(x1)

= p(C1q)p(C2q)

that is
log(p(Cq)) = log(p(C1q)) + log(p(C2q))

The last two equations involve functions with an evident solution

log(pα(Cq)) = (Cq)α = cαe−i
π
2
α(1−sign(q))|q|α

where the exponential expression introduces a phase shift and where Cα =
Cα1 + Cα2 . Thus the characteristic function of a Levy distribution is

pα(q) = exp[−C|q|α] (5)

with 0 < α ≤ 2 to guarantee a positive characteristic function.
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For α = 2, we recover the Gaussian distribution. For α = 1, we recover
the Cauchy distribution where the Fourier transform of the exponential
expression gives a Lorentzian and generates a characteristic function:

p1(x) =
c

π
.

1

x2 + c2

An important case is the asymptotic behavior at large |x|:

pα(x) ∼ αC

π
.Γ(α).sin(

πα

2
)

1

|x|α+1

that has a heavy tail for α < 2. The distribution behaves like a Pareto law
for which:

pα(x) ∼ 1/|x|α+1

The nth order moment, 〈xn〉 =
∫
dxxnpα(x) diverges for n > α, that is

〈x2〉 =∞ preventing us from constructing a Fokker-Planck theory and using
the large number law and the Central Limit theorem for α < 2.

6.2 Levy process

The Levy process, which can be viewed as a generalization of the diffusion
process, is time dependent and that has a Levy distribution at infinitesimal
times ∆t. Writing the probability density equation while considering a
stationary state and many small steps, the result will be a Levy transition
where the probability of transition from (x0, t0) −→ (xN , tN ) is:

p(x0, t0;xN , tN )

=

∫
dx1 . . .

∫
dxN−1.p(x0, t0;x1, t1).p(x1, t1|x2, t2) . . . p(xN−1, tN−1;xN , tN )

(6)

according to Chapman Kolmogorov equation that relates the joint probability
distributions of different sets of coordinates on a stochastic Markovian process.

Defining ∆t = ti+1 − ti and N∆t = tN − t0 for N � 1 and assuming the
process is stationary in time and space i.e.

p(xi, ti;xi+1, ti+1) = p(xi+1 − xi; ti+1 − ti) = p(xi+1 − xi; δt) (7)
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Eq.(6) becomes:

p(xN − x0;N∆t) =

∫
dy1 . . . dyNp(y1; ∆t) . . . p(yN ; ∆t) (8)

where yi = xi+1 − xi. When introducing the generating functions

p(q) =

∫
eiqxjp(xj ; ∆t)dxj

and

pN (q) =

∫
eiqy

N
p(yN ;N∆t)dyN

for yN =
∑N

i=1 xi = xN − x1, we finally obtain

pN (q) = (p(q))N (9)

Writing p(q) → pα(q; ∆C) and pN (q) → pα(q;CN ), these equations are
consistent with Eq. 5 for a value of CN :

CN = N∆C = N∆t(∆C/∆t) = CN∆t = Ct

Therefore
pN = pα(q, Ct) = exp[−CN∆t|q|α] (10)

and the characteristic function pα(q, t) of the Levy process is:

pα(q, t) = exp[−Ct|q|α] (11)

To get the original Levy process, we inverse Fourier transform the previous
equation and find pα(x, t):

pα(x, t) =

∫
dqeiqx−Ct|q|

α
(12)

The asymptotic behavior for |x|→ ∞ follows a power law (pα(x, t) ∼ t/|x|α+1)
with a long tail and one can verify that the second moment 〈x2〉 → ∞ for
α < 2 at any time t.

Here again the particular case of α = 2 generates a p2(q) = exp[−Ctq2]
and a probability distribution function p2(x, t):

p2(x, t) =

∫
e−iqx.e−ctq

2
dq =

e−x
2/Ct

√
Ct

(13)

which is a diffusion propagator.
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7 Realizing Levy flights in transport in fluids.

In a typical diffusive process, particles intermingle as a result of their natural
random movement with a mean squared displacement 〈(δx)2〉 that is ∝ t.
There exists however anomalous processes for which the mean squared
displacement is proportional to a tγ with γ 6= 1. Depending on the value of
γ, the process is said to be:

• super diffusive for γ > 1

• sub-diffusive for γ < 1

Sub-diffusion occurs in fluids with sticking regions that retard the motion
of particles. For example a time dependent flow might be responsible of
delaying the particles motion, making them stick to certain well defined
regions. Trajectories are then chaotic. On the other hand, a super diffusive
regime is characterized by particles undergoing long Levy flights which are
characterized by divergent second moments as we saw above. This type of
anomalous transport was experimentally studied in [3]. The experimental
setup is an annular rotating tank filled with water. Water was continuously
pumped inside and out of the tank from its bottom while maintaining a
laminar velocity field in the rotating tank. As a result of the Coriolis force
action on the pumped fluid, a sheared counter-rotating azimuthal jet is
created leading to appearance of a chain of vortices or rings that move
around the annulus. Passive tracers were then injected in the flow and
followed along the cross section. It was found that despite the flow remaining
laminar, the tracers follow chaotic trajectories, intermittently sticking to the
vortices areas then moving larger distances in the jet regions that sandwich
the observed six vortices. Trajectory points are collected and used to calculate
the variance of the displacement of tracer particles and the sticking and flight
time probability distributions. In Fig. 13, the flat parts of the θ profiles
correspond to oscillatory movement of the tracer within the vortex ring while
the steeper parts represent a Levy flight i.e. a transition from one ring to
the other. Note that most of the transition occur in the corotating direction
(positive slope) as a result of the curvature of the system. Plotting the
displacement variance 〈θ − 〈θ〉)2〉 versus time on a log log scale, an almost
linear curve with a slope γ = 1.6 was found.

[h] γ > 1 indicates a super-diffusive regime. By computing the duration
of those sticking/transition events, a pdf can be determined. An inverse
power relation P ∼ t−β is found for the probability distribution function of
both sticking and flight times. All the previous characteristics are absent
when the experiment is repeated in a turbulent flow. As a final outcome, the
experiment is a proof of anomalous transport and Levy flights in fluids that
clearly illustrates Madelbrot’s Joseph effect (oscialltory movement), that
gets interrupted Madelbrot’s Noah effect (Levy flights from one ring to the
other).
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Figure 12: Vortices and time evolution of trace particles in a rotating tank.

Figure 13: Azimuthal displacement as function of time.
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Figure 14: Variance of the azimuthal displacement vs. time.

Figure 15: a) Sticking time pdf exhibiting a power law with a negative slope
γ = 1.6. b) Flight time pdf exhibiting a power law with a negative slope
µ = 2.3
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